查看原文
其他

数学之美:当代最伟大数学家回顾过去百年的数学(一)

更多内容,敬请关注:

作者:Michael Atiyah爵士,英国数学家,被誉为当今最伟大的数学家之一
如果有人想谈论一个世纪的终结以及下一个世纪的开始,那么他有两个具有相当难度的选择:一个是回顾过去百年的数学;另一个是对未来百年数学发展的预测,我选择了前面这个比较困难的任务,任何人都可以预测未来而且我们并不能判定是对还是错。然而对过去的任何评述,每个人都可以提出异议。
>>>>
我在这里所讲的是我个人的观点。这个报告不可能包含所有内容,特别是,有一些重要的内容我不准备涉及,一部分是因为我不是那些方面的专家,一部分也是出于它们已经在其他地方被评述过了。例如,我不会去谈论那些发生在逻辑与计算领域内的著名事件,这些事件往往是与像Hilbert,Godel,Turing这些伟大的名字相关的,除了数学在基础物理中的应用之外,我也不会谈论太多数学的其他应用,这是因为数学的应用太广泛了,而且这需要专门的论述。每一个方面都需要一个专门的报告,也许大家在这次会议的其他报告中会听到很多关于这些内容的演讲。另外,试着罗列一些定理,甚至是列出在过去一百年的著名数学家的名字也是毫无意义的,那简直是在做枯燥的练习。所以,代替它们的是,我试着选择一些我认为在很多方面都是很重要的主题来讨论并且强调围绕这些主题所发生的事情。
首先我有一个一般性的说明。世纪是一个大约的数字概念。我们不会真地认为在过整整一百年的时候,有些事情会突然停下来,再重新开始,所以当我描述二十世纪的数学时,有些内容实际上可能是跨世纪的,如果某件事件发生在十九世纪九十年代,并持续到二十世纪初,我将不去计较这种时间方面的细节。我所做的就象一个天文学家,工作在一个近似的数字环境中。实际上,许多东西始于十九世纪,只不过在二十世纪才硕果累累。
这个报告的难点之一是很难把我们自己放回到1900年时作为一位数学家的位置上,这是因为上个世纪的数学有非常多的内容已经被我们的文化和我们自己吸收掉了。难以想象人们不用我们的术语来思考的那个时代是什么样子的。实际上,如果现在有人在数学上有一个真正重要的发现,其后他也一定会与之一起被忽略掉了!他会完全地被融入到背景之中,于是为了能够回顾过去,我们必须努力去想象在不同时代,人们用不同方式思考问题时的情景。

从局部到整体


作为开始,我准备列一些主题并且围绕它们来讨论。我谈论的第一个主题概括地讲,就是被大家称为从局部到整体的转变。在古典时期,人们大体上已经研究了在小范围内,使用局部坐标等等来研究事物。在这个世纪,重点已经转移到试图了解事物整体和大范围的性质。由于整体性质更加难以研究,所以大多只能有定性的结果,这时拓扑的思想就变得非常重要了。正是Poincare,他不仅为拓扑学发展作出先驱性的贡献,而且也预言拓扑学将成为二十世纪数学的一个重要的组成部分,顺便让我提一下,给出一系列著名问题的Hilbert并没有意识到这一点。拓扑学很难在他的那些问题中找到具体体现,但是对Poincare而言,他相当清楚地看出拓扑学将成为一个重要的内容。
让我试着列一些领域,然后大家就能知道我在想什么了。例如,考虑一下复分析(也被称为“函数论”),这在十九世纪是数学的中心,也是象Weierstrass这样伟大人物工作的中心。对于他们而言,一个函数就是一个复变量的函数;对于Weierstrass而言,一个函数就是一个幂级数。它们是一些可以用于写下来,并且可以明确描绘的东西或者是一些公式。函数是一些公式:它们是明确可以用显式写下来的。然而接下来Abel、Riemann和其后许多人的工作使我们远离了这些,以至于函数变得可以不用明确的公式来定义,而更多地是通过它们的整体性质来定义:通过它们的奇异点的分布,通过它们的定义域位置,通过它们取值范围。这些整体性质正是一个特定函数与众不同的特性。局部展开只是看待它们的一种方式。
一个类似的事情发生在微分方程中,最初,解一个微分方程,人们需要寻找一个明确的局部解!是一些可以写下来的东西,随着事物的发展,解不必是一个显函数,人们不一定必须用好的公式来描述它们。解的奇异性是真正决定其整体性质的东西。与发生在复分析中的一切相比,这种精神是多么的类似,只不过在细节上有些不同罢了。
在微分几何中,Gauss和其他人的经典工作描述了小片的空间,小块的曲率以及用来描述局部几何的局部方程。只要人们想要了解曲面的整体图象以及伴随它们的拓扑时,从这些经典结果到大范围的转变就是很自然的了。当人们从小范围到大范围时,最有意义的性质就是拓扑的性质。
数论也有一个类似的发展,尽管它并不是很明显地适用于这一框架。数论学家们是这样来区分他们称之为“局部理论”和“整体理论”的:前者是当他们讨论一个单个的素数,一次一个素数,以及有限个素数时;后者是当他们同时讨论全部素数时。这种素数和点之间,局部和整体之间的类似性在数论发展过程中起了很重要的作用,并且那些在拓扑学发展中产生的思想深深地影响了数论。
当然这种情况也发生在物理学中,经典物理涉及局部理论,这时我们写下可以完全描述小范围性质的微分方程,接下来我们就必须研究一个物理系统的大范围性质。物理学涉及的全部内容就是当我们从小范围出发时,我们可以知道在大范围内正在发生什么,可以预计将要发生什么,并且沿着这些结论前进。


维数的增加


我的第二个主题有些不同,我称之为维数的增加。我们再次从经典的复变函数理论开始:经典复变函数论主要是详细讨论一个复变量理论并加以精炼。推广到两个或者更多个变量基本上发生在本世纪,并且是发生在有新现象出现的领域内。不是所有的现象都与一个变量的情形相同,这里有完全新的特性出现,并且n个变量的理论的研究越来越占有统治地位,这也是本世纪主要成就之一。
另一方面,过去的微分几何学家主要研究曲线和曲面,我们现在研究n维流形的几何,大家仔细想一想,就能意识到这是一个重要的转变。在早期,曲线和曲面是那些人们能真正在空间里看到的东西。而高维则有一点点虚构的成分,在其中人们可以通过数学思维来想象,但当时人们也许没有认真对待它们。认真对待它们并且用同样重视程度来研究它们的这种思想实际上是二十世纪的产物。同样地,也没有明显的证据表明我们十九世纪的先驱者们思考过函数个数的增加,研究不单单一个而是几个函数,或者是向量值函数(vector-valued function)。所以我们看到这里有一个独立和非独立变量个数增加的问题。
线性代数总是涉及多个变量,但它的维数的增加更具有戏剧性,它的增加是从有限维到无穷维,从线性空间到有无穷个变量的Hilbert空间。当然这就涉及到了分析,在多个变量的函数之后,我们就有函数的函数,即泛函。它们是函数空间上的函数。它们本质上有无穷多个变量,这就是我们称为变分学的理论。一个类似的事情发生在一般(非线性)函数理论的发展中。这是一个古老的课题,但真正取得卓越的成果是在二十世纪。这就是我谈的第二个主题。



从交换到非交换


第三个主题是从交换到非交换的转变。这可能是二十世纪数学,特别是代数学的最主要的特征之一。代数的非交换方面已经极其重要,当然,它源自于十九世纪。它有几个不同的起源。Hamilton在四元数方面的工作可能是最令人惊叹的,并且有巨大的影响,实际上这是受处理物理问题时所采用的思想所启发。还有Grassmann在外代数方面的工作,这是另一个代数体系,现在已经被融入我们的微分形式理论中。当然,还有Cayley以线性代数为基础的矩阵方面的工作和Galois在群论方面的工作等。
所有这些都是以不同的方式形成了把非交换乘法引入代数理论的基石,我形象地把它们说成是二十世纪代数机器赖以生存的“面包和黄油”。我们现在可以不去思考这些,但在十九世纪,以上所有例子都以各自不同的方式取得了重大的突破,当然,这些思想在不同的领域内得到了惊人的发展。矩阵和非交换乘法在物理中的应用产生了量子理论。Heisenberg对易关系是非交换代数在物理中的一个最重要的应用例子,以至后来被von Neumann推广到他的算子代数理论中。


从线性到非线性


我的下一个主题是从线性到非线性的转变。古典数学的大部分或者基本上是线性的,或者即使不是很精确的线性,也是那种可以通过某些扰动展开来研究的近似线性,真正的非线性现象的处理是非常困难的,并且只是在本世纪,才在很大的范围内对其进行了真正的研究。
我们从几何开始谈起:Euclid几何,平面的几何,空间的几何,直线的几何,所有这一切都是线性的。而从非欧几何的各个不同阶段到Riemann的更一般的几何,所讨论的基本上是非线性的,在微分方程中,真正关于非线性现象的研究已经处理了众多我们通过经典方法所看不到的新现象。在这里我只举两个例子,孤立子和混沌,这是微分方程理论两个非常不同的方面,在本世纪已经成为极度重要和非常著名的研究课题了。它们代表不同的极端。孤立子代表非线性微分方程的无法预料的有组织的行为,而混沌代表的是无法预料的无组织的行为(disorganized behavior)。这两者出现在不同领域,都是非常有趣和重要的,但它们基本土都是非线性现象。我们同样可以将关于孤立子的某些工作的早期历史追溯到十九世纪下叶,但那只是很少的一部分。
当然,在物理学,Maxwell方程(电磁学的基本方程)是线性偏微分方程。与之对应的是著名的Yang-Mills方程,它们是非线性方程并被假定用来调控与物质结构有关的力。这些方程之所以是非线性的,是因为Yang-Mills方程本质上是Maxwell方程的矩阵体现,并且由矩阵不可交换这一事实导致方程中出现非线性项。于是在这里我们看到了一个非线性性与非交换性之间的有趣的联系。非交换性产生一类特殊的非线性性,这的确是很有意思和很重要的。

来源:人工智能科学与技术,本文仅用于学术分享,版权属于原作者。若有侵权,请联系,微信号: 1306859767,Eternalhui, 删除或修改!

END
                                              



精选推荐

01

《高等代数》 北大版 第四版 各章知识框架全解

02

数学各学科分支:全套高清图的获取方式

03

实系数六大定理相互证明(最详细版本,值得收藏)


■ END ■
北大版-高代四课后习题A组答案-电子版:第一章  |  第二章  |  第三章  |  第四章  |  第五章  |  第六章  |  第七章  |  第八章  |  第九章  |  第十章  |北大版-高代四课后习题A组答案-视频版:第一章   |   第二章  |  第三章  |  第四章  |  第五章  |  第六章  |  第七章  |  第八章  |  第九章  |  第十章  |高代资料系列:高代各章知识框架全解  |  数学各学科:全套高清图的获取方式  |  高代资料书推荐  |  Eisenstein判别法的深入分析  |  整除中难题分析 |  整数的带余除法定理  |  最大公因式证明题  |  什么是高等代数  |  如何学好高等代数 | 高代每日一题:一道行列式计算问题  |  矩阵秩的公式  |  关于正定矩阵的一道题   |  二次型正惯性指数,很容易看错的题  |  为什么要强调对高代基本概念的了解,举例说明  |  高代一个重要的结论,你是不是快忘了?  |  向量组求秩,并线性表示的内在原理到底是什么?  |  求特征值,两问看起来一样?非也  |  高代:同时可以对角化,另有证法吗? |   高代:这个求公共特征值思路难想到!  |  高代:一道多项式题,你会证吗?  |  秩为1的矩阵的性质总结  |   一道行列式计算问题  |  一道关于半正定的题  |  矩阵分解:LR分解  
线性代数第六版答案:第一章习题解答  |  第二章习题解答  |  第三章习题解答  |  第四章习题解答  |  第五章习题解答  |  第六章习题解答 | 《线性代数》同济版 第六版 各章知识框架全解数学学科排名: 2018数学学科排名  |  2019数学学科排名  | 2020数学学科排名  |  考研真题解答: 2021年华中科技大学高代答案(视频+文字)  |  2019年华东师范大学高代答案(视频+文字) |  2021年东南大学数分高代考研真题  |  2017年华东师范大学高等代数考研真题及参考解答  |  2000年-2013年厦门大学高等代数考研真题  |  2021复旦大学研究生入学考试代数卷点评  |  2021年武汉大学高等代数考研真题及解答  |  2021年武汉大学数学分析考研真题及解答  |  2019年中国科学技术大学夏令营数学高代试题  |  2021年中南大学高等代数考研真题  |  2021年中南大学数学分析考研真题  |  四川大学2021年考研高等代数真题  |  中国科学技术大学2021夏令营试题  |  研究生培养: 公式转化为LaTex代码  |  如何注册arXiv  |  MathSciNet 使用指南   |  如何在MathType中输入花体(线性变换)与空心字? |  Maple的安装  |  论文编辑器LaTex的安装  |  Maple17执行命令时出现“正在与内核建立联系”   |   WinEdt 与 SumatraPDF 的正反向搜索功能 |  Latex:请教一个问题,关于连续引用多个参考文献?   |  数学学科分类系统(MSC2020)科研必备  |  Ctex中WinEdt经常弹出注册小窗口 解决办法   |  Latex中使用align来对齐多行公式的排版技巧  |  Latex:请教一个问题,关于连续引用多个参考文献?  |  怎么把文章挂arXiv上  |  Latex中使用align来对齐多行公式的排版技巧  |  Maple画点  |  JCR分区和中科院分区,你了解多少?|  论文发表二三事  |  Latex图片经常不在固定的位置怎么办?  |  数学兴趣:用数学公式怎样表白  |  研究生丛书(GTM)  |  惊呆!数学公式推导出圣诞节  |  怎么获取网络文档?  |  数学的意义(值得推荐,非常好的文章)  |  《数学,是理解世界的秘诀》  |  惊呆!数学公式推导出圣诞节  |  网络空间到底是不是线性空间?  |    网页隐藏密码的显示方法  |  多项式时间(Polynomial time)  |  世界上最美丽的23个公式  |  张奠宙:数学本质的揭示  |  如何学好高等代数  |  手绘图解:从零维到十维空间  |  P类问题、NP类问题、NPC问题、NP难问题  |  最美数学公式图形  |  和数学家一样思考的10种方法  |  数学中鲜为人知的定理!  |  学者热议中国数学教育的困境与出路  |  为什么数学是理解世界的最佳方式  |  四位数学家给研究生的忠告 |  食堂打菜阿姨对极限的理解? |   EndNote文献管理器  |  丘成桐:物理与数学的碰撞融合 |  十大中国数学之最  |  袁亚湘:数学漫谈-数学的重要性  |  怎样才能做好研究? |   2021年度邵逸夫数学科学奖   |  数论重大突破:120年后,希尔伯特的第12个数学难题借助计算机获得解决  |  那些不容错过的数学学习网站  |  瞎扯数学分析-微积分  |  你是不是经常念错:常用数学符号读法大全  |   162年难题,黎曼猜想被印度数学家迎刃而解?克雷数研所发出质疑  |  数学的威力,原则上是先求保命,再去干掉对手  |  第三届(2021)阿里巴巴全球数学竞赛决赛试题  |   北大数学天才柳智宇出家多年,首次接受记者采访  |  应用数学的强大威力  |  2021年度邵逸夫数学科学奖  |   怎么重装win10系统  |  科研人必备:SCI,SCIE,ESCI是什么?  |  20本经典数学书  |  数学家《收获与播种——格罗滕迪克自传》摘译(I)  |   详细剖析日本数学本科,俄罗斯数学本科和国内大学数学的优劣之处  |  李克强最新讲话:数学是一切科学的基础,要提高学校数理化生等基础学科教育水平  |  20本经典数学书  |  未经允许,禁止转载

钟哥数学博士团队介绍:      团队是由国内数学“一流学科”博士组成,接受了国内顶尖教授导师的培养,数学专业知识扎实、素质过硬,博士团队有着丰富的数学(高代、数分等)基础课程的教学经验,以及数学资料的研发与制作经验。   
    高代学习QQ交流群:945166269. 加入高代数分交流微信群请加助手微信:zhongyuemingmit

让我知道你在看


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存